

Volume17 (2023), Issue 1 p.70-76

DOI: https://doi.org/10.56936/18290825-2023.17.70-76

CORTICAL THICKNESS AND CORTICAL VOLUME MEASUREMENTS OF THE CINGULATE GYRUS IN SUDANESE YOUNG ADULT USING BRAINSUITE

WEGDAN M.M.A.¹, SAAD A.², AHMED S.I.³, ALSHARIF M.H.K.^{4*}, ELFAKI A.³

¹Department of Anatomy, Faculty of Medicine, National University, Khartoum, Sudan ²Department of Orthopedic and Traumatology, Faculty of Medicine, Omdurman Islamic University, Omdurman, Sudan

³Department of Anatomy, Faculty of Medicine, Al-Zaeim Al-Azhari University, Khartoum, Sudan ⁴ Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia

Received 13.11.2022; accepted for printing 10.01.2023

Abstract

Cingulate gyrus is a part of the limbic lobe. Anatomically and functionally, the cingulate gyrus is subdivided into four areas: the anterior cingulate cortex, midcingulate cortex, posterior cingulate gyrus, and the retrosplenial part. The variety of autonomic functions, such as regulating heart rate and blood pressure and having a major role in cognitive function, also has a function in emotional cognition. The present study aims to measure cortical thickness and cortical volume in apparently healthy young adult Sudanese.

A cross-sectional study was conducted among randomly selected residents of Sudan aged 20 to 40 years (30 males, 30 females) with normal magnetic resonance images of the brain. All study participants underwent magnetic resonance imaging, and measurements of the cingulate gyrus were assessed using BrainSuite software. Analysis was conducted using Statistical Package for the Social Sciences, version 28, and p-values less than 0.05 were considered significant.

For the right cingulate gyrus, the mean cortical thickness and cortical volume were 4.0 mm and 20.9 cm³, respectively. The mean cortical thickness and volume in the left cingulate gyrus were 4.0 mm and 22.3 cm³, respectively. The cortical volume of the left cingulate gyrus was statistically significantly larger than the right (p=0.04). The right and left cingulate gyrus cortical volumes of males were significantly larger than that of females (p=0.001), while the cortical thickness showed an insignificant difference (p=0.3). The cortical volume of the cingulate gyrus was not statistically related to age or body mass index.

The left cingulate gyrus's total volume was larger than that of the right cingulate gyrus. There was not significant difference in cortical thickness. Age and body mass index do not affect cortical volume and thickness.

Keywords: cortical thickness, cortical volume, cingulate gyrus, MRI, BrainSuite.

CITE THIS ARTICLE AS:

WEGDAN M.M.A., SAAD A., AHMED S.I., ALSHARIF M.H.K., ELFAKI A (2023). Cortical thickness and cortical volume measurements of the cingulate gyrus in young adult Sudan ese using BrainSuite. The New Armenian Medical Journal. 17(1): 70-76 DOI: https://doi.org/10.56936/18290825-2023.17.70-76

Address for Correspondence:

Dr. Mohammed H. Karrar Alsharif, PhD Department of Basic Medical Science Prince Sattam Bin Abdulaziz University Al Kharj 11942, Saudi Arabia Tel.: 009665552644088 E-mail: dr.anatomy83@yahoo.com

INTRODUCTION

The cingulate gyrus is a part of the limbic system with the subcallosal, parahippocampal, dentate, uncus, hippocampus proper, subiculum, amygdaloid body, septal area, some nuclei of the thalamus, and hypothalamus. The cingulate gyrus lies on the medial aspect of the cerebral hemisphere and is an arch-shaped convolution situated just above the corpus callosum [*Dumas E et al., 2012; Patestas M, Gartner L, 2016*].

Anatomically and functionally, the cingulate gurus are subdivided into four areas. The anterior cingulate cortex is the frontal part of the cingulate cortex, which plays a role in a wide variety of autonomic functions, such as regulating heart rate and blood pressure and is vital to cognitive functions, such as reward anticipation, decision-making, empathy, and emotion. Neuroscientists indicate that the dorsal anterior cingulate cortex is primarily related to rational cognition, while the ventral is more related to emotional cognition. Mid cingulate cortex appears to be involved in cognitive control and decision-making. The posterior cingulate gyrus act on a topo-kinetic memory circuit with a primary function of visual-spatial orientation. Lastly, the retrosplenial cortices are responsible for spatial navigation, autobiographical memory retrieval, and imagination [DK J et al., 2013; Patestas M, Gartner L, 2016].

In the literature, the volume of the cingulate gyrus is affected by the normal aging process, gender, and diseases (schizophrenia and Alzheimer's disease) [*Choi J et al., 2005; Calabrese D et al., 2008; Bailly M et al., 2015*]. Volumetric measurements of brain structures and cingulate gyrus volume existed in the literature previously, but until now, there were no data about cingulate gyrus volume in the Sudanese population. Therefore, this study provides a volumetric measurement of the cingulate gyrus in a healthy Sudanese young adult population and provides a starting point for new research in this field [*Joshi A et al., 2012a; Taha K et al., 2022*].

This study aimed to determine the cingulate gyrus volume among healthy young adult Suda-

nese by using magnetic resonance imaging (MRI), which provides excellent soft tissue contrast and anatomical details. Furthermore, BrainSuite is a collection of software tools that enable automatic segmentation of the brain and its gyri.

MATERIALS AND METHODS

Study population: MR images of 59 participants from different Sudanese tribes were randomly selected. All participants were right-handed, and their ages ranged from 20-40 years (mean age 37.4 ± 6.7 years). Their mean body mass index was $24.2 \pm 4.5 \ kg/m^2$. The participants were healthy young adults without possible neurological, psychological, or congenital malformations.

Variables: Cortical volume and cortical thickness of the cingulate gyrus; age, sex, and body mass index.

Magnetic resonance image: Structural MRI was done in the radiology department, Doctor's Clinic. Magnetic resonance imaging was performed on 1.5 Tesla Philips scanners, Version: 3.2.1 (USA). T1-weighted images were obtained using three-dimensional acquisition by Magnetization Prepared Rapid Acquisition Gradient Echo (MP-RAGE) which produces clear grey/white matter contrast in the coronal section. Acquisition time is 5 *minutes* and 18 *seconds*, Slice distance is 1.0 *mm*, the field of view is 250 read,192 *mm* phase, TR =1657*ms*, TE=2.95*ms*, bandwidth 180*Hz/pixel*, flip angle 15°, ECHO spacing =7.5*ms*, phase resolution =100%, and slice resolution =50.

Magnetic resonance images analysis: MR images T1 weighted of the brain were exported, and further measurements of the cingulate gyrus were done using BrainSuite program version 16a1, which is an automatic software designed program to read and analyse the MR images of the brain, and that works in the following steps. Firstly, the

To overcome it is possible, due to the uniting the knowledge and will of all doctors in the world

WEGDAN M.M.A.. et al.

brain is isolated from the surrounding tissue, and a 3D model is formulated. Following this, the skull is stripped. The diffusion constant is set to 30 (to increase the amount of smoothing), and the edge constant is set to 0.8 (to enhance skill stripping). When clicking "stage", skull stripping will be finished (Fig. 1) [*Shattuck D, Leahy R, 2002; Joshi A et al., 2004*], and the mask will contain the whole brain with a thin layer of non-brain tissue.

Moving the cerebrum to the labeling stage, the

FIGURE 1. Cortical surface extraction [Shattuck D, Leahy R, 2002].

To register the cingulate gyrus volume from an isolated 3D model of the cerebral hemispheres, an image from the atlas is registered with an isolated

FIGURE 2. Labeling of the cerebrum, cerebellum, and brain stem [Shattuck D, Leahy R, 2002].

FIGURE 4. Creation of the pial surface [Shattuck D, Leahy R, 2002].

72

FIGURE 3. White matter masks [Shattuck D, Leahy R, 2002].

FIGURE 5. Volume/surface registration [Shattuck D, Leahy R, 2002].

sample for automatic labeling and comparison. This enables easier and faster registration and analysis of all samples (automatic labeling). This step can be done manually by an expert neuroanatomist (manual labeling). Volume/Surface registration is the name of this last step (Fig. 5) [*Shattuck D, Leahy R, 2002*].

Data analysis: Data was reviewed, ordered, and coded. Statistical Package for the Social Sciences, version 28.0 was used for data analysis. Descriptive statistics were performed for all variables through means and standard deviations for numerical data and frequency and percentage for categorical data. Inferential statistics were done in the form of T-tests to compare the total volume of the left and right cingulate gyrus and these volumes between males and females. In addition, linear regression and Pearson correlation tests were used to study the relationship between age and body mass index to the total volume of the cingulate gyrus. P-values less than 0.05 were considered statistically significant.

Results

Cingulate gyrus volume: For the Right cingulate gyrus, the mean cortical thickness was $4.0 \pm 0.2 \text{ }mm^3$, and cortical volume was $20.9 \pm 3.3 \text{ }cm^3$. For the left cingulate gyrus, the mean cortical thickness was $4.0 \pm 0.3 \text{ }mm^3$, and cortical volume was $22.3 \pm 3.7 \text{ }cm^3$ (Table 1).

The difference in the cortical volume and cortical thickness of the left and right cingulate gyrus

There were no statistically significant differences in the mean cortical thickness between the right and left cingulate gyrus (p>0.05). However, the cortical volume of the left gyrus was significantly higher than the right one (p=0.04).

	TABLE 1		
Descriptive statistics of the cingulate gyrus			
Characteristic	Overall , $N = 60^1$		
Right cingulate gyrus			
Mean cortical Thickness (mm)	4.0 ± 0.2		
cortical Volume (GM+WM) (<i>cm</i> ³)	20.9 ± 3.3		
Left cingulate gyrus			
Mean cortical Thickness (mm)	4.0 ± 0.3		
cortical Volume (GM+WM) (cm ³)	22.3 ± 3.7		

STATE MEDICAL UNIVERSIT YEREVAN OFFICIAL PUBLICATION OF THE

TABLE	2:
-------	----

of the cingulate gyrus between genders				
Characteristic	Female	Male	P-value ²	
Right cingulate gyrus				
Mean cortical Thickness (mm)	4.0 ± 0.2	4.1 ± 0.3	0.3	
cortical Volume (GM+WM) (<i>cm</i> ³)	19.5 ± 2.3	22.4 ± 3.5	<0.001	
Left cingulate gyrus				
Mean cortical Thickness (mm)	4.0 ± 0.3	4.0 ± 0.2	>0.9	
cortical Volume (GM+WM) (<i>cm</i> ³)	20.4 ± 2.6	24.2 ± 3.8	<0.001	

Differences in the mean cortical thickness and volume

Gender differences in the cortical thickness and volume of the cingulate gyrus

There was no statistically significant difference in the mean cortical thickness of the right and left cingulate gyri between males and females. However, the cortical volumes of the left and right gyri were significantly higher in males than in females (p=0.001) (Table 2).

Correlation between the cingulate gyrus volume, age, and body mass index

There is no significant correlation between age and the cortical volume of the right (R = -0.09, p=0.5) or left cingulate gyrus (R = -0.12, p=0.36). Hence, age has no impact on the total volume of the right and left cingulate gyrus.

There is no significant correlation between body mass index and the cortical volume of the right or left cingulate gyrus (p>0.05).

DISCUSSION

The present study revealed a statistically significant asymmetry in the right and left cingulate gyrus volume. The left cingulate gyrus cortical volume is greater than the right. This may be because all participants are right-handed, and the brain's left hemisphere is dominant.

Males and females showed no differences in the mean cortical thickness of the right and left cingulate gyrus. In contrast, males had significantly higher cortical volumes in the left and right gyrus in our study. Conversely, earlier studies reported that females had more grey matter in the cingulate

gyrus than males. This difference may result from body shape, environmental factors, or genetics [Good C et al., 2001; Chen X et al., 2007; Mann S et al., 2011].

This study is consistent with M. Yucel (2001), Smith C. (2007) and their co-authors, a study in which the cingulate gyrus volume did not show a significant correlation with the study participants' age [Yücel M et al., 2001; Smith C et al., 2007; Szczerbak G et al., 2007]. However, Bergfield K. and colleagues (2010) reported a significant correlation between age and cingulate gyrus volume [Rumiati R et al., 2004; Di Paola Á et al., 2012]. The reduction of cingulate gyrus volume is critical to the healthy aging process since it affects the anterior cingulate part, while the midcingulate is relatively preserved. This difference might result from the present study not including participants under 20 and over 40 years old. Lastly, in this study, body mass index showed an insignificant correlation with the cortical volume and thickness of the cingulate gyrus.

In conclusion, our study concluded that the Cingulate gyrus cortical volume is higher in the left gyrus compared to the right. Meanwhile, it is significantly different between gender, which is larger in males compared to females.

Nevertheless, neither genders nor left and right cingulate gyrus cortical thickness shows any statistical differences. On the other hand, there is no correlation between age or body mass index with the cingulate gyrus volume.

ACKNOWLEDGMENT: This publication was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia.

R E F E R E N C E S

- Bailly M, Destrieux C, Hommet C, Mondon K, Cottier JP., et al (2015). Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer's disease and mild cognitive impairment: MRI and 18F-FDG PET quantitative analysis using FreeSurfer. BioMed research international
- 2. Bergfield KL, Hanson KD, Chen K, Teipel SJ, Hampel H., et al (2010). Age-related networks of regional covariance in MRI gray matter: reproducible multivariate patterns in healthy aging. Neuroimage. 49: 1750-1759
- 3. Calabrese DR, Wang L, Harms MP, Ratnanather JT, Barch DM, et al (2008). Cingulate gyrus neuroanatomy in schizophrenia subjects and their non-psychotic siblings. Schizophrenia research. 104: 61-70
- 4. Chen X, Sachdev PS, Wen W, Anstey KJ (2007). Sex differences in regional gray matter in healthy individuals aged 44–48 years: a voxel-based morphometric study. Neuroimage. 36: 691-699
- Choi JS, Kang DH, Kim JJ, Ha TH, Roh KS., et al (2005). Decreased caudal anterior cingulate gyrus volume and positive symptoms in schizophrenia. Psychiatry Research: Neuroimaging. 139: 239-247
- 6. Di Paola Á, Luders E, Cherubini A, Sanchez-Castaneda C, Thompson P., et al (2012). Multimodal MRI analysis of the corpus callosum reveals white matter differences in presymptomatic and early Huntington's disease. Cerebral cortex. 22: 2858-2866
- DK J, Knösche TR, Turner R (2013). White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage. 73: 239-254
- 8. Dumas EM, Van Den Bogaard SJ, Ruber ME, Reilmann R, Stout JC., et al (2012). Early

changes in white matter pathways of the sensorimotor cortex in premanifest Huntington's disease. Human brain mapping. 33: 203-212

- 9. Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001). Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage. 14: 685-700
- Joshi AA, Shattuck DW, Leahy RMA (2012). Method for automated cortical surface registration and labeling. Biomedical Image Registration: 5th International Workshop, WBIR 2012, Nashville, TN, USA, Proceedings 5. 2012a. Springer. 180-189
- Joshi AA, Shattuck DW, Thompson PM, Leahy RM (2004). Cortical surface parameterization by p-harmonic energy minimization. 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), 2004. IEEE, 428-431
- Joshi SH, Cabeen RP, Joshi AA, Sun B, Dinov I., et al (2012 b). Diffeomorphic sulcal shape analysis on the cortex. IEEE transactions on medical imaging. 31: 1195-1212
- 13. Mann SL, Hazlett EA, Byne W, Hof PR, Buchsbaum MS., et al (2011). Anterior and posterior cingulate cortex volume in healthy adults: effects of aging and gender differences. Brain research. 1401: 18-29
- 14. Patestas MA, Gartner LP (2016). A Textbook of Neuroanatomy, John Wiley & Sons
- 15. Rumiati RI, Weiss PH, Shallice T, Ottoboni G, Noth J, Zilles K, Fink GR (2004). Neural basis of pantomiming the use of visually presented objects. Neuroimage. 21: 1224-1231
- *16. Shattuck DW, Leahy RM (2002).* BrainSuite: an automated cortical surface identification tool. Medical image analysis. 6: 129-142

WEGDAN M.M.A.. et al.

The New Armenian Medical Journal, Vol.17 (2023), 1, p.70-76

- 17. Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Markesbery WR (2007). Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiology of aging. 28: 1075-1087
- Szczerbak G, Nowak P, Kostrzewa RM, Brus R (2007). Maternal lead exposure produces longterm enhancement of dopaminergic reactivity in rat offspring. Neurochemical Research. 32: 1791-1798
- Taha KM, Elfaki A, Ali TO, Elamin AY, Bakhit NM, Almasaad JM, Alsharif MHK (2022). Gender dependent difference of hippocampus and amygdala sizes in relation to depression: A manual brain segmentation study.
- 20. Yücel M, Stuart G W, Maruff P, Velakoulis D, Crowe S F, Savage G & Pantelis C (2001). Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cerebral cortex, 11, 17-25.

THE NEW ARMENIAN MEDICAL JOURNAL

Volume17 (2023). Issue 1

CONTENTS

- 4. Alruzayhi I.K., Alhussain A.A., Aljammaz A.A., Alhamri A.A., Alrashoud B.M. KNOWLEDGE AND AWARENESS OF EARLY STROKE SIGNS: AN ANALYTICAL REVIEW
- 11. Gavanji S., Baghshahi H., Hamami Chamgordani Z. Cutaneous adverse reactions to herbal medicines
- **22.** Sargsyan M.V., Galstyan S.G. The role of hormonal changes in adaptation disorders of young systems in the course of community-acquired pneumonia
- 27. GHUBATYAN A.A., GEVORGYAN N.V., SEYRANYAN N., BADALYAN E., GEVORGYAN M.I., NAVASARDYAN L.V. VITAMIN D STATUS IN A CASE SERIES OF ARMENIAN POPULATION: ONE CENTER COHORT DATA
- 33. Dzhaynakbaev N.T., Aldangarova G.A., Aumoldaeva Z.M., Toreyeva Sh.M., Suleimenova A. Features of the course and outcome of pregnancy in women with covid-19
- 41. Alsharif M.H., Bakhit N.M., Alarifi A., Nassir E.M., Mahdi A.A., Almasaad J.M., Elamin A.Y., Taha K.M.

HEPATIC MULTIPLE HYPERINTENSE CYSTIC LESIONS: A RARE CAROLI DISEASE.

- **46.** Balkić Widmann J., Dimitrijević I., Radoš I., Banjari I. The use of wearable technology in a comprehensive chronic pain MANAGEMENT PROGRAMME
- 54. Poyil M.M., Bari M. D. N. REPURPOSING THE DRUG DULOXETINE FOR ITS ANTIBACTERIAL ACTIVITY AGAINST
- CATHETER ASSOCIATED URINARY TRACT INFECTIONS 63. Karimpour F., Tkhruni F.N., Karapetyan K., Afroughi S., Peikar A., Gohargani M., Tabatabei N., Ebrahimzadeh Koor B., Salehi S.O, A STUDY OF IRANIAN TRADITIONAL DAIRY BEVERAGE (RICHAL SHIRI) AND

INVESTIGATION INTO SOME PROPERTIES OF ITS ISOLATED LACTIC ACID BACTERIA

- 70. Wegdan M.M.A., Saad A., Ahmed S.I., Alsharif M.H.K., Elfaki A Cortical thickness and cortical volume measurements of the cingulate gyrus in sudanese young adult using brainsuite
- 77. Shamsaei G.H., Zakerkish M., Kashipazha D., Moradi M., Zakizadeh H. Comparison of sural nerve amplitude and sural/radial amplitude ratio in electrodiagnosis of patients with neuropathy in type 2 diabetes
- 84. SAI BHAVANA D., SHYAMALA G., SUJATHA B.

ACCOUNTS OF ADVERSE NEONATAL EFFECTS IN PRETERM PRELABOR RUPTURE OF MEMBRANES: ANTICIPATING MATERNAL PLATELET INDICES AND C-REACTIVE PROTEIN AS EFFECTIVE BIOMARKERS

- 94. ZHARFAN R.S., ISMUDIANTO A., HAKAMY, RUSLI Y.R., SAUD F.M., REHATTA N.M. LANDM ARKS-GUIDED COMPARED TO ULTRASOUND-GUIDED FOR SPINAL ANESTHESIA IN ELDERLY: SYSTEMATIC-REVIEW AND META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS
- 102. Hakobyan E.K., Avagyan S.A., Zilfyan A.V., Orduyan S.L., Gazaryan H.V., Simonyants L.G., Hovhannisyan V.V.

THE ROLE OF POLYAMINES IN THE REGENERATIVE PROCESS OF SKIN AEROBIC-PURULENT WOUNDS

110. FALLAHI M.J., MASNAVI E., HASSANZADEH S.

EFFECTIVENESS OF BEDSIDE REMINDER ON REDUCING LABORATORY TEST AND COSTS AT INTENSIVE CARE UNITS

THE NEW ARMENIAN MEDICAL JOURNAL

Volume17 (2023). Issue 1

The Journal is founded by Yerevan State Medical University after M. Heratsi.

Rector of YSMU

Armen A. Muradyan

Address for correspondence:

Yerevan State Medical University 2 Koryun Street, Yerevan 0025, Republic of Armenia

Phones:

(+37410) 582532 YSMU (+37493 588697 Editor-in-Chief **Fax:** (+37410) 582532 **E-mail:** namj.ysmu@gmail.com, ysmiu@mail.ru **URL:** http//www.ysmu.am

Our journal is registered in the databases of Scopus, EBSCO and Thomson Reuters (in the registration process)

REUTERS

Copy editor: Tatevik R. Movsisyan

Printed in "LAS Print" LLC Director: Suren A. Simonyan Armenia, 0023, Yerevan, Acharyan St. 44 Bulding, Phone: (+374 10) 62 76 12, E-mail: las.print@yahoo.com

Editor-in-Chief
Arto V. Zilfyan (Yerevan, Armenia)
Deputy Editors
Hovhannes M. Manvelyan (Yerevan, Armenia)
Hamayak S. Sisakyan (Yerevan, Armenia)
Executive Secretary
Stepan A. Avagyan (Yerevan, Armenia)
Editorial Board
Armen A. Muradyan (Yerevan, Armenia)
Drastamat N. Khudaverdyan (Yerevan, Armenia
Levon M. Mkrtchyan (Yerevan, Armenia)
Foregin Members of the Editorial Board
Carsten N. GUTT (Memmingen, Germay)
Muhammad MIFTAHUSSURUR (Indonesia)
Alexander WOODMAN (Dharhan, Saudi Arabia)
Hesam Adin Atashi (Tehran, Iran)
Coordinating Editor (for this number)
Alexander WOODMAN (Dharhan, Saudi Arabia)
Editorial Advisory Council
Ara S. Babloyan (Yerevan, Armenia)
Aram Chobanian (Boston, USA)
Luciana Dini (Lecce, Italy)
Azat A. Engibaryan (Yerevan, Armenia)
Ruben V. Fanarjyan (Yerevan, Armenia)
Gerasimos Filippatos (Athens, Greece)
Gabriele Fragasso (Milan, Italy)
Samvel G. Galstyan (Yerevan, Armenia)
Arthur A. Grigorian (Macon, Georgia, USA)
Armen Dz. Hambardzumyan (Yerevan, Armenia)
Seyran P. Kocharyan (Yerevan, Armenia)
Aleksandr S. Malayan (Yerevan, Armenia)
Mikhail Z. Narimanyan (Yerevan, Armenia)
Levon N. Nazarian (Philadelphia, USA)
Yumei Niu (Harbin, China)
Linda F. Noble-Haeusslein (San Francisco, USA)
Arthur K. Shukuryan (Yerevan, Armenia)
Suren A. Stepanyan (Yerevan, Armenia)
Gevorg N. Tamamyan (Yerevan, Armenia)
Hakob V. Topchyan (Yerevan, Armenia)
Alexander Tsiskaridze (Tbilisi, Georgia)
Konstantin B. Yenkova n (Yerevan, Armenia)
Peijun Wang (Harbin, Chine)
- cijan (, ang (ranoni, chino)